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Carnot groups: definition

Definition

A Carnot group G of step two is a connected nilpotent Lie group such that its Lie
algebra g has a decomposition of the form

g = g1 ⊕ g2, g2 = [g1, g1], [g, g2] = 0.

• G can be identified as Rn × Rm where n = dim(g1),m = dim(g2) with the group
operation

(x , v) ? (x ′, v ′) = (x + x ′, v + v ′ + (〈Alx , x
′〉)ml=1), x , x ′ ∈ Rn, v , v ′ ∈ Rm,

where A1, . . . ,Am are n × n skew-symmetric matrices. 0 is identity element.

• G is unimodular and the Haar measure coincides with the Lebesgue measure on
G = Rn+m.

• G is equipped with dilations δc ∈ Aut(G) such that δc(x , v) = (cx , c2v) where
x ∈ Rn, v ∈ Rm

2/25



Some examples

• Heisenberg group: H2d+1 = Cd × R.

(z1, v1) ? (z2, v2) = (z1 + z2, v1 + v2 +
1

2
Im(z1 · z2)).

• H-type groups: Hd,m = R2d × Rm

(z1, v1) ? (z2, v2) = (z1 + z2, v1 + v2 +
1

2
(〈Ulz1, z2〉)ml=1),

U1, . . . ,Um are orthogonal, skew-symmetric, and UlUl′ = −Ul′Ul for all
1 6 l , l ′ 6 m.

• Non-isotropic Heisenberg groups: H2d+1
ω = R2d × R

(z1, v1) ? (z2, v2) = (z1 + z2, v1 + v2 +
1

2
ω(z1, z2)), ω is alternating bilinear form.
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Sub-Riemannian geometry on Carnot groups

On any Carnot group G with Lie algebra (g, 〈·, ·〉), we can consider left-invariant vector

fields X̃ (g) ∈ TgG defined by

X̃ (g) = (dτg )1(X ), X ∈ g, τg (h) = g ? h,

and can define the left-invariant inner product

〈X̃ (g), Ỹ (g)〉TgG = 〈X ,Y 〉, X ,Y ∈ g.

Taking an orthonormal basis {X1, . . . ,Xn} ∈ g1 and {Z1, . . . ,Zm} ∈ g2, we note that

(Lie{X̃1, . . . , X̃n}) = T G.

Thus, {X̃1, . . . , X̃n} defines a sub-Riemannian structure on G with a sub-Laplacian

∆h =
n∑

i=1

X̃ 2
i .

∆h is a sub-elliptic and by Hörmander’s theorem it is hypoelliptic.
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Example: 3-dimensional Heisenberg group

The three dimensional Heisenberg group H = R3 is equipped with the group operation

(x , y ,w) ? (x ′, y ′,w ′) = (x + x ′, y + y ′,w + w ′ +
1

2
(xy ′ − x ′y)).

The left-invariant vector fields in T H are generated by

X =
∂

∂x
− y

2

∂

∂z
, Y =

∂

∂y
+

x

2

∂

∂z
, Z =

∂

∂z

• [X ,Y ] = Z , which implies that H = Span{X ,Y } defines a sub-Riemannian
structure on H, if X ,Y are considered as orthonormal basis of H.

• The sub-Laplacian on H is defined by

∆h = X 2 + Y 2 =
∂2

∂x2
+

∂2

∂y 2
+ (x2 + y 2)

∂2

∂z2
+

1

2

(
y

∂2

∂x∂z
− x

∂2

∂y∂z

)
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Objectives

• Obtaining a complete description of the spectrum of ∆h through intertwining
with some semigroups on euclidean spaces.

• To see how the spectrum behaves with respect to some Lévy-type perturbations
of ∆h.

• Proving isospectrality of some Ornstein-Uhlenbeck type operators on G via
intertwining.

8/25



Outline

1 Carnot groups

2 Sub-Riemannian structure on Carnot groups

3 Objectives

4 Horizontal heat semigroup
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Horizontal heat semigroup on G

Recall the sub-Laplacian/horizontal Laplacian ∆h = X 2
1 + · · ·+ X 2

n .

(∆h,C
∞
c (G)) is essentially self-adjoint in L2(G).

Definition

The horizontal heat semigroup Qt on L2(G) is defined by Qt = et∆h .

• Qt is left-translation invariant, that is, Qt(τg f) = τgQt f where τg f(h) = f(g ? h).

• Haar measure on G is the unique invariant measure (up to multiplication by
constants) of Qt .

• For any c > 0 and t > 0, δcQtc2 = Qtδc , where δc f(g) = f(δcg).

• Qt has smooth transition densities qt(g , h) such that

Qt f(g) =

∫
G

qt(g , h)f(h)dh, ∀f ∈ L1(G) ∩ L2(G).

• qt(g , h) = qt(0, g−1 ? h).
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Spectrum of Qt via intertwining

H is a Hilbert space and B : D(B)→ H. B is invertible if B−1 is a bounded operator
on H.

σ(B) = {λ ∈ C : (λI − B) is not invertible}

is a closed subset of C. σ(B) can be decomposed into three disjoint parts:

point σp(B) = {λ ∈ C : ker(λI − B) 6= {0}}
cont σc(B) = {λ ∈ σ(B) \ σp(B), R(λI − B) 6= H, cl(R(λI − B)) = H}

residual σr (B) = {λ ∈ σ(B) \ σp(B), cl(R(λI − B)) ( H}
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Spectrum contd..

Recall that G = Rn+m.

Theorem

There exists a closed subspace L ⊂ L2(G) with an orthogonal decomposition

L = ⊕∞n=1Ln,

and strongly continuous contraction semigroups (Pn
t )t>0 on L2(Rk+m) such that

1. QtLn ⊆ Ln for all n.

2. σ(Pn
t ) = σc(Pn

t ) = [0, 1] for all n.

3. There exist unitary operators Un : L2(Rk+m)→ Ln such that

QtUn = UnP
n
t on L2(Rk+m).

We can describe the subspaces L,Ln explicitly. It requires some Fourier analysis on G
defined via irreducible unitary representations.

Theorem

For any t > 0, σ(Qt) = σc(Qt) = [0, 1].
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Some remarks

• When G is the H-type group Hd,m = R2d ×Rm, then Pn
t is the Poisson semigroup

generated by −(2n + d)
√
−∆ on Rm.

• In general, Pn
t is not Markovian.
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Horizontal Brownian motion

The Markov process associated to Qt is called the horizontal Brownian motion on G.

Recall that the group operation on G is given by

(x , v) ? (x ′, v ′) = (x + x ′, v + v ′ + (〈Alx , x
′〉)ml=1).

Then, denoting the horizontal Brownian motion by B(t) we have

B(t) =

B(t),

∫ t

0

〈A1B(t), dB(t)〉︸ ︷︷ ︸
Lévy area

, . . . ,

∫ t

0

〈AmB(t), dB(t)〉

 ∀t > 0.

where (B1(t), . . . ,Bn(t)) is the standard Brownian motion on Rn.

Observation: The projection of B onto the horizontal variables coincides with the
standard Brownian motion.

For (x , v) ∈ G, let Π : C0(Rn)→ C0(G) be defined as

Πf (x , v) = f (x).

When Qt is the horizontal heat semigroup on C0(G), QtΠf = ΠQt f , where Qt is the
classical heat semigroup on Rn.
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Lévy-type perturbations of ∆h

We can also consider the full Laplacian on G by adding the second order differential
operators from g2. Let us define

∆ = ∆h + ∆v , ∆v =
m∑
j=1

∂2

∂v 2
j

.

∆G is also left-translation invariant and it generates a Markov semigroup on L2(G).
Moreover,

∆Π = ∆hΠ + ∆vΠ = Π∆ (∆vΠ = 0)

its projection onto the horizontal space coincides with the standard Brownian motion.

What is the class of left-translation invariant Markov semigroups on G whose
horizontal projections coincide with the standard Brownian motion?
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A characterization theorem

Theorem

Let Q̃t be a left-translation invariant Markov semigroup on G such that Q̃tΠ = ΠQt

on C0(G). Then, Q̃t is generated by

∆L = ∆h + Lv

for some m-dimensional Lévy generator L in the direction of the vertical variables of G.

Lf (w) = −cf (w) + tr(Σ∇2f (w)) + 〈b,∇f (w)〉

+

∫
Rm

(
f (w + w ′)− f (w)− 1{|w′|61}〈w ′,∇f (w)〉

)
κ(dw ′), f ∈ C∞c (Rm)

where c > 0, Σ is a nonnegative definite matrix, b ∈ Rm, and κ is a Lévy measure on
Rm satisfying ∫

Rm

(1 ∧ |w |2)κ(dw) <∞.
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Spectrum of ∆L

∆L is not necessarily self-adjoint but it is a normal operator on L2(G).

Recall that any Lévy generator can be uniquely associated to a Lévy-Khintchine
exponent ψ : R→ C defined by

ψ(λ) = c − 〈Σλ, λ〉+ i〈b, λ〉+

∫
Rm
∗

(e i〈w,λ〉 − 1− i〈w , λ〉1{|w|61})κ(dw).

Theorem

∆L has purely continuous spectrum. Moreover, Im(σ(∆L)) = Range(Im(ψ)). If ψ is
real valued then σ(∆L) = (−∞, ψ(0)].

Thus, the spectrum of ∆L depends on L, as expected.
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The Ornstein-Uhlenbeck semigroup on G

Define
Pt = δe−t Q 1−e−2t

2

.

Since
δcQtc2 = Qtδc for all c > 0,

Pt is a Markov semigroup. It is called the OU semigroup on G.

The generator of Pt is

A = ∆h −D,

where D is the generator of the dilation group (δe−t )t>0 on G.

Pt is ergodic with invariant distribution p = q 1
2
, where q 1

2
is the horizontal heat kernel

at t = 1
2
.

Theorem (Lust-Piquard, 2009)

Pt is non self-adjoint in L2(G, p). For any t > 0,

σ(Pt) \ {0} = σp(Pt) = e−tN0 .

The key idea in Lust-Piquard’s proof uses the scaling property of ∆h.
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Perturbation of OU semigroups

For a Lévy generator L, define the perturbed operator

AL = ∆L −D = A + Lv

Note that ∆L does not satisfy any scaling property in general.

Theorem

1. AL is the generator of a Markov semigroup PL
t .

2. If the Lévy measure has finite log-moment, PL is ergodic. The invariant
distribution of PL, denoted by pL can be computed explicitly.

We consider the semigroup PL in the weighted space L2(G, pL).
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Intertwining between OU semigroups on G

Let ψ be the Lévy-Khintchine exponent of L and define

qL(dv) =

∫
Rm

e−i〈v,λ〉 exp

(∫ ∞
0

ψ(−e−2sλ)ds

)
dλ.

The above quantity makes sense due the finite log-moment condition mentioned
before.

Also define ΛL : Bb(G)→ Bb(G)

ΛLf(x , v) =

∫
Rm

f(x , v + v ′)qL(dv ′)

Theorem

For all t > 0,

PtΛL = ΛLPL
t on Lq(G, pL), q > 1
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Compactness and spectrum of OU semigroups

Theorem

1. If the Lévy measure κ satisfies∫
Rm

eε|v|κ(dv) <∞ for some ε > 0,

then PL
t is a compact operator on Lq(G, pL) for any q > 1.

2. Under the above condition, the Lq(G, pL)-spectrum is given by

σ(PL
t ) \ {0} = σp(PL

t ) = e−tN0 .

The eigenspace of e−tn is

Λ−1
L e−

∆h
2 (Pn),

where Pn is the space of δ-homogeneous polynomials of degree n.

So, the spectrum of PL
t does not depend on L !.
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Some (open) questions

Let H be the Heisenberg group of dimension 3.

Theorem (Baudoin, Bonnefont, Chen ’21)

Consider the OU semigroup Pt on L2(H, p) corresponding to the sub-Laplacian ∆h.
Then, for any ε > 0,

‖Pt f −
∫
G

fdp‖L2(G,p) 6 Cεe
−(1−ε)t‖f −

∫
G

fdp‖L2(G,p),

where Cε →∞ as ε ↓ 0.

• Consider the OU semigroup on G corresponding to

AG = ∆−D (non self-adjoint)

It has spectral gap of size 1. Can we prove Poincaré inequality using the spectral
gap?

• If the answer to the first question is ‘yes’, can we use it to improve the result of
Baudoin-Bonnefont-Chen for any Carnot group of step 2?
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Thank You for your attention!
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